\qquad Period: \qquad Date: \qquad
Assignment 3.9
State the y-intercept, degree (number of roots), and the end behavior of each polynomial.

1. $f(x)=x^{5}+7 x^{4}-9 x^{3}+x^{2}-13 x+8$
y-intercept:
degree:
end behavior as $x \rightarrow-\infty$:
end behavior as $x \rightarrow \infty$:
2. $h(x)=-7 x^{9}+x^{2}$
y-intercept:
degree:
end behavior as $x \rightarrow-\infty$:
end behavior as $x \rightarrow \infty$:
3. $\quad q(x)=x^{3}-94 x^{2}-x-20$
y-intercept:
degree:
end behavior as $x \rightarrow-\infty$:
end behavior as $x \rightarrow \infty$:
4. $g(x)=3 x^{4}+x^{3}+5 x^{2}-x-15$
y-intercept:
degree:
end behavior as $x \rightarrow-\infty$:
end behavior as $x \rightarrow \infty$:
5. $p(x)=5 x^{2}-18 x+4$
y-intercept:
degree:
end behavior as $x \rightarrow-\infty$:
end behavior as $x \rightarrow \infty$:
6. $y=-4 x+12$
y-intercept:
degree:
end behavior as $x \rightarrow-\infty$:
end behavior as $x \rightarrow \infty$:

Draw a sketch of a graph with the given features.
7. $5^{\text {th }}$ degree
negative leading coefficient.

Perform the indicated operation.
8. $\left(3 m^{2}-5\right)-\left(-m^{3}+4 m^{2}+4 m-2\right) \quad$ 9. $(2 x-1)\left(4 x^{2}+x-3\right)$
10. $\left(x^{3}+5 x^{2}-7 x+2\right) \div(x-2)$
11. $\left(3 x^{4}-5 x^{3}+4 x-6\right) \div\left(x^{2}-3 x+5\right)$
12. $\left(x^{3}-x^{2}+4 x-10\right) \div(x+2)$

